
Soil fertility management challenges in mango orchards

General soil requirements for good mango growth

Enough soil moisture

Three steps of organic soil fertility management

3rd step: Application of supplements

Enhancing and balancing plant nutrition

through application of fertilizers, soil

amendments and irrigation

2nd step: Soil organic matter management

Enhancing soil organic matter content through application of organic material

1st step: Soil and water conservation

Stabilizing and protecting the soil and harvesting and conserving water

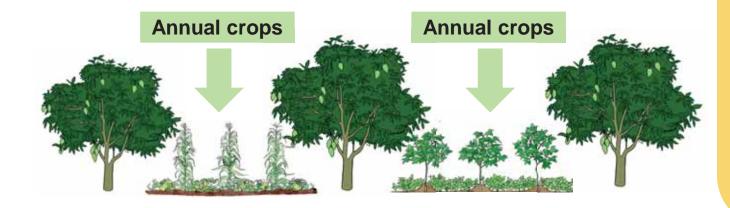
3

Mulching around young trees

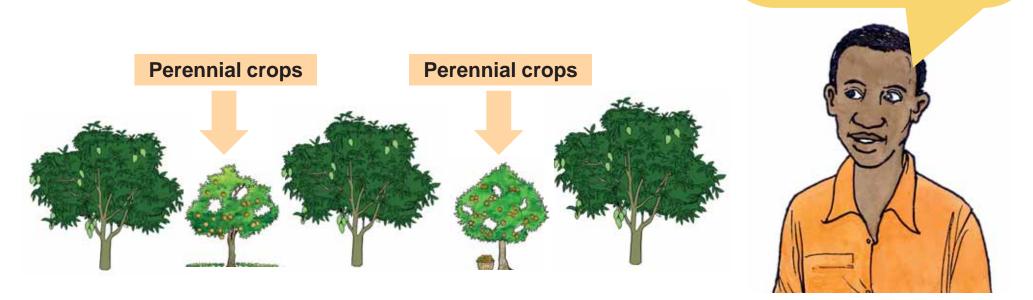
2

Mulch reduces evaporation of water from the soil and keeps it moist.

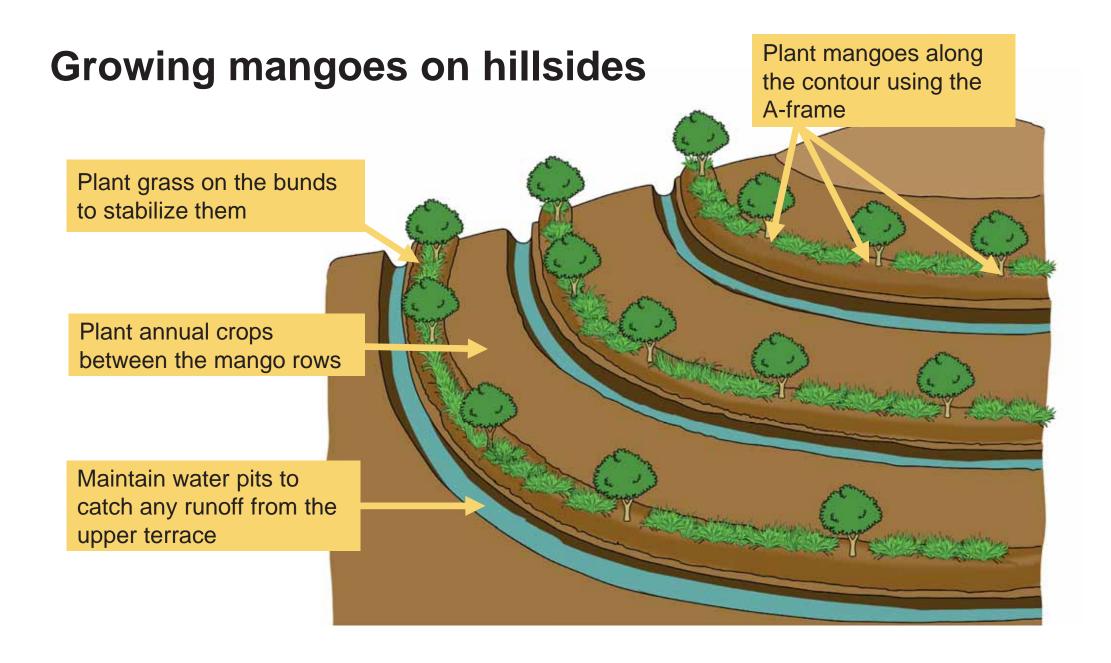
• Add composted manure in the planting hole before mulching.



- Immediately after planting, cover the area around the seedling with a layer of leaves, grass, twigs, crop residues or straw.
- Leave some open soil between the mulch and the plant to avoid damages by insects, rodents and fungus.

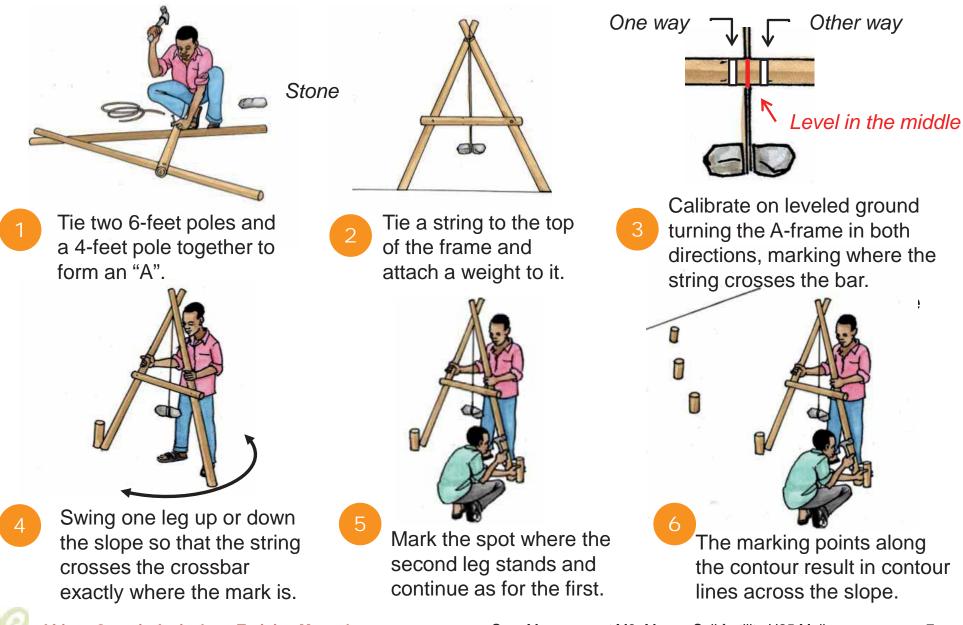


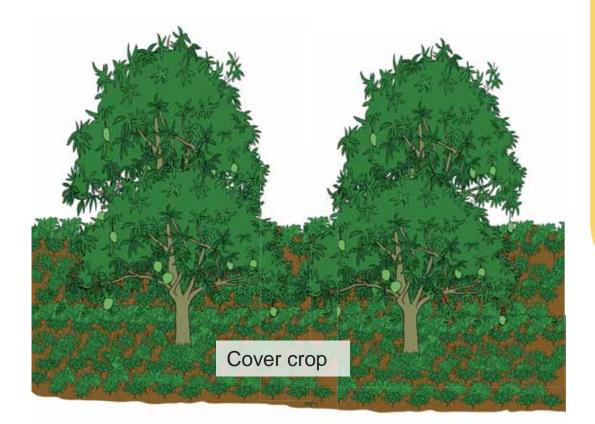
Intercropping in mango orchards



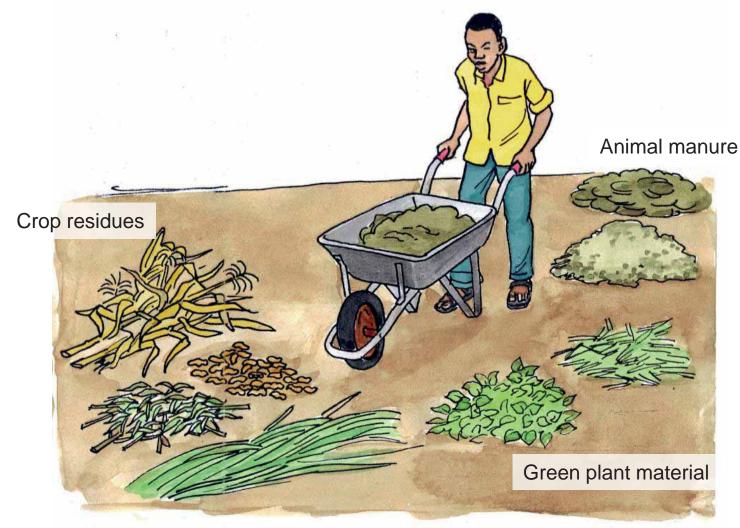
Intercropping has several **advantages**:

- Better use of the land
- Diversification of the cropping system
- Spreading the risk of crop failure
- Increased income from additional harvests





How to make and use the A-frame


Using cover crops in mango orchards

Cover crops should be ...

- Low-growing
- Not climbing
- Fast growing and cover the soil in a short time and throughout the year
- Nitrogen-fixing
- Resistant against common pests
 and diseases
- Easy to sow and manage (slash and or cut for fodder)

Materials used for composting

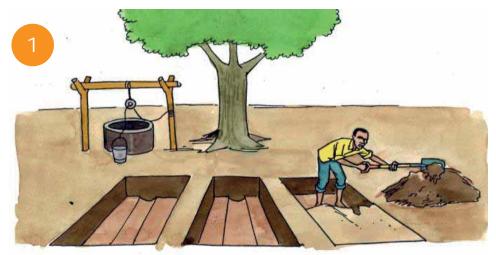

In addition, following materials may also be used:

- > Ashes
- > Saw dust
- > Algae
- > Some top soil or old compost

How to make good compost – 'heap' method

Collect compost materials in a place under shade.

Mix fresh and dried materials in similar proportions.


Chop the bulky materials to a length of a finger.

Cover the heaps with dried materials and water them regularly.

How to make good compost – Pit method (1)

Choose a shady place in proximity of water. Dig shallow pits.

Collect compost materials in a place under shade.

Cut the plant material to the size of a finger.

How to make good compost – Pit method (2)

- Make two heaps, one with the manure and the green material, one with the dry material.
- Mix dry and fresh compost materials in equal proportions.
- Water well.

Fill a layer of dry material at the bottom of a 2 m x 1 m pit, 1 m deep.

- Cover the pit with dry materials.
- Water it regularly.

Crop Management M9: Mango Soil fertility U25 Mali

Manure application in mango orchards

Apply compost or manure at planting.

Top dress with compost or manure around growing and mature trees.

Top dress with compost or manure around mature trees.

How to make liquid animal manure

with 2 to 3 parts of water.

African Organic Agriculture Training Manual

Apply the manure to the foot of the plants.

Fertilizers of organic origin for organic farming

Fertilizer	Fertilizing effect	Availability of nitrogen	Origin	Comments
Guano	N, P	•••	Dried dropping of seabirds	 P content higher than the plants' demand
Hoof and horn meal	N, P	●(●)	Slaughterhouse waste	> The finer it is grinded, the faster N is available
Algae	Minerals		Seeweed	 May contain heavy metals depending on the origin
Oil cakes	N, P	●(●)	By-products of oil production	 Examples: castor cake, neem cake, peanut cake, rapeseed cake
Hair, wool, feathers	Ν	●●(●)	Slaughterhouse waste, animal production	
Agro-industrial by-products	N, P, K	••	By-products from brewery, distillery, textile processing, husks and peels, food processing	 Must be free of significant contaminants Best composted before application to the land
Composts	N, P, K	•	Mushroom waste, humus from worms and insects, urban and household wastes	 Must be free of significant contaminants
Plant preparations and extracts	N, P, K	•••	Extracts of fresh or dried plants	 The effect depends on the original materiel and can vary Older preparations are better for fertilization of plants

Fertilizers of mineral origin for organic farming (1)

Fertilizer	Origin	Characteristics	Application
Plant ashes	Burned organic material	 Mineral composition similar to plants Easy uptake of the minerals Wood ashes rich in K and Ca 	 > To compost (best) > Around the base of the plants
Limestone	Ground limestone Algae	 > Buffers low pH (content of Ca and Mg secondary) > Algae: rich in trace elements 	 Every two to three years when soil-pH is low (avoid excessive use, as it reduces availability of P and increases deficiencies in micro-nutrients)
Stone powder	Pulverised rock	 Trace elements (depending on the composition of the source) The finer the grinding, the better the adsorbance 	 To farmyard manure (reduces volatilisation of N and encourages the transformation process)

Fertilizers of mineral origin for organic farming (2)

Fertilizer	Origin	Characteristics	Application
Mineral potassium	Natural potassium salts (e.g. sulfate of potash, muriate of potash, kainite, sylvanite, patenkali)	 > Sulphate of potash is easily available > Patentkali: high contents of Mg and S; easily available > In rock form slow reaction 	 Only in case of demonstrated deficiency
Rock phosphate	Pulverised rock containing P	 > Easiliy adsorbed to soil-minerals > Weakly adsorbed to organic matter > Slow reaction 	 To compost Not to reddish soils (as irreversibly adsorbed) and to soils with high pH
Clay	Natural	 Good nutrient and water binding capacity 	 Large amounts required for soil improvement
Sulfur	Volcanic	 Sulphate of potash is easily available, but can be washed out Elemental sulfur: slow reaction 	
Trace elements	Anorganic or complexed salts	 Complexed salts are more easily available to plants than anorganic salts, but are more expensive 	 Spraying onto plants where soil/plant nutrient deficiency is documented by soil or tissue testing or diagnosed

