Réduction de la fertilité du sol du au brûlage répété des chaumes

Pertes dues aux cendres soufflées par le vent

Pertes par la fumée

Pertes par les cendres d'origine hydrique

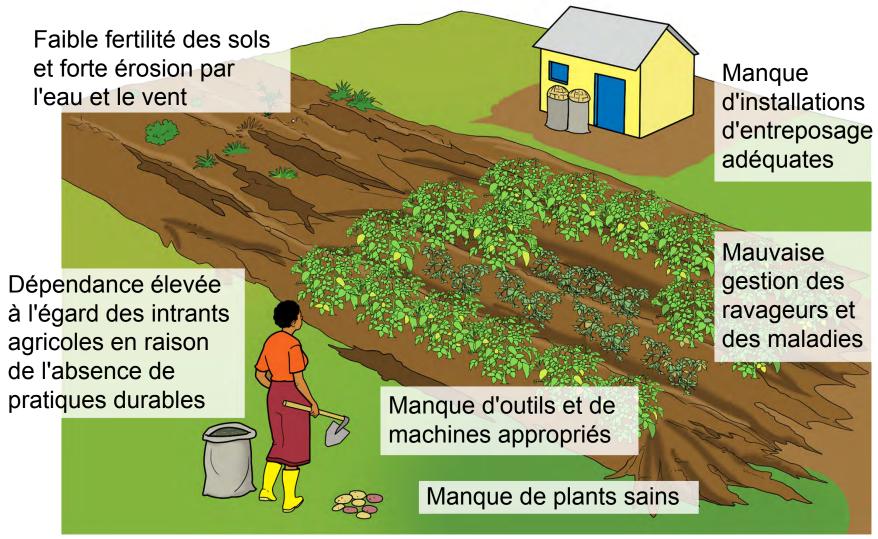
Pertes par les cendres en suspension dans l'air

Pertes approximatives:

N: 80 % = 60 kg

P: 45 % = 6 kg

K:40% = 110 kg


C: 80 % = 3500 kg

Pertes en particulier de P et K avec les précipitations

Pertes substantielles de S, P et K des chaumes

Défis liés à la production de pommes de terre

Principes de l'IFOAM de l'agriculture biologique

Santé

Pas de pesticides chimiques
Aucun additif pour
l'alimentation du bétail
Créer un environnement
sain

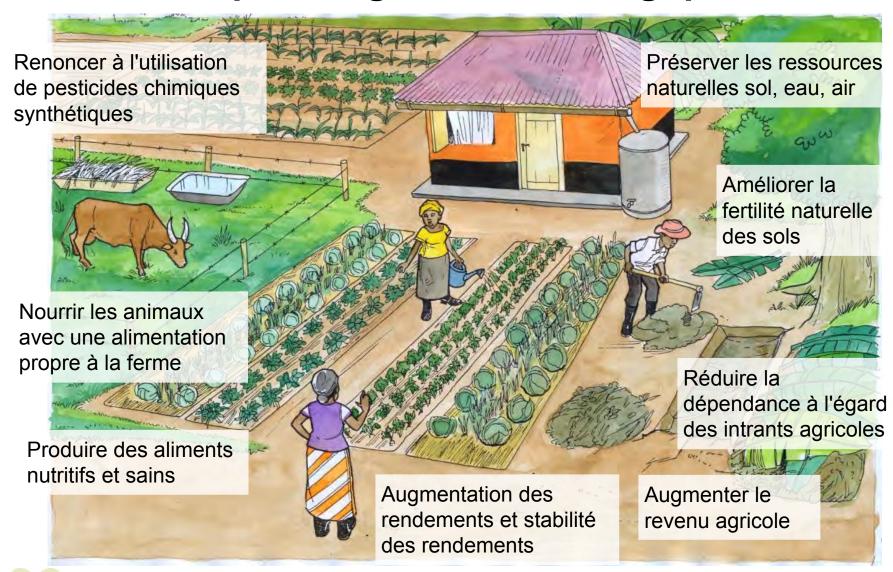
Soin

Utilisation efficace des ressources Inclure les connaissances traditionnelles Exclusion des OGM

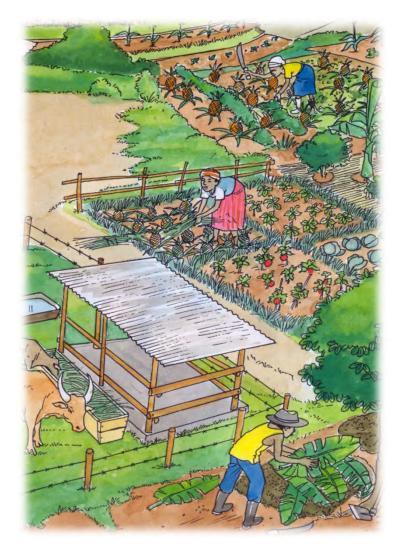
Écologie

Restauration de la fertilité des sols

Promouvoir la biodiversité


Recyclage des nutriments

Équité


Des parts équitables pour tous les partenaires de la chaîne de valeur

Motivations pour l'agriculture biologique

Les agriculteurs biologiques s'efforcent de....

- Utilisation prudente des ressources
- Préserver et promouvoir la fertilité des sols
- Minimiser l'érosion des sols, limiter les pertes d'éléments nutritifs
- Créer des systèmes de production diversifiés
- Créer des conditions de croissance optimales pour les cultures, bien gérer les cultures
- Respecter les besoins spécifiques des animaux d'élevage
- Assurer la santé et la robustesse des animaux de ferme
- Production d'aliments de haute qualité
- Des relations de marché stables et transparentes, et des prix équitables
- Développement durable de l'entreprise agricole

Les agriculteurs biologiques renoncent à....

- Pesticides synthétisés chimiquement
- Engrais minéraux azotés
- **Herbicides**
- Engrais P, K, Mg et oligo-éléments facilement solubles
- Régulateurs de croissance pour les plantes (hormones)
- Micro-organismes, plantes et animaux génétiquement modifiés
- Usage courant de médicaments vétérinaires (antibiotiques)
- Promoteurs de croissance antimicrobiens
- Des quantités élevées d'intrants agricoles pour des rendements maximaux

Exigences générales de croissance de la pomme de terre

Favorable

Climat

Climat équilibré

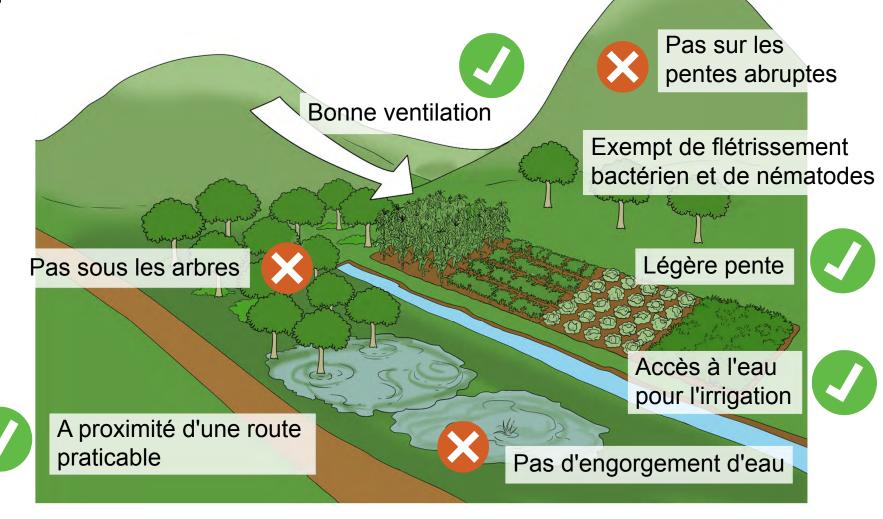
 Température quotidienne de 10 à 22 °C avec une moyenne de 15 °C

Sol

- Léger à moyen
- Profondeur de travail suffisante
- Teneur élevée en humus
- pH 5,5 à 7
- Alimentation en eau uniforme

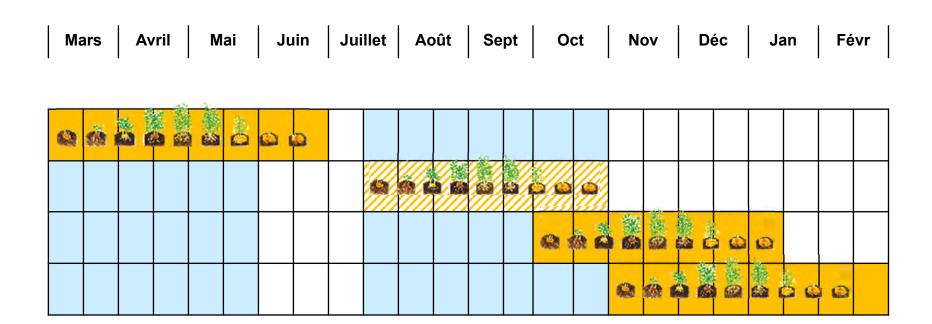
Défavorable

 Longues périodes humides ou sèches pendant la floraison et la formation des tubercules

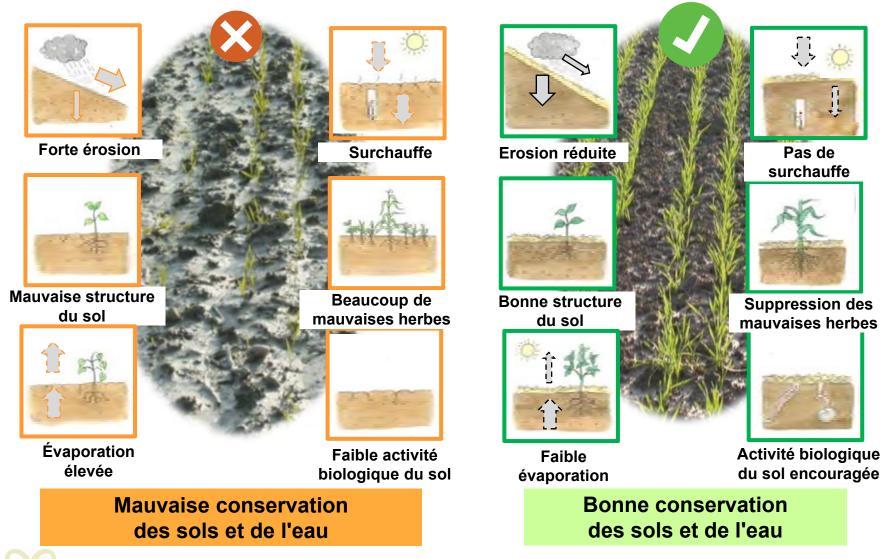

Climat

- Pierreux
- Peu profond
- Compacté
- Mauvais drainage
- Acide

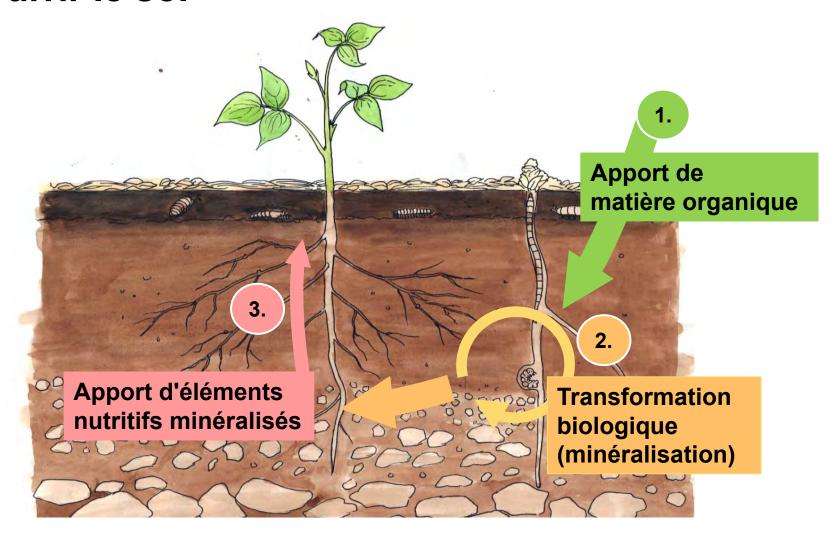
Sol



Sites appropriés et inadaptes à la culture de la pomme de terre



Calendrier de production de pommes de terre au Cameroun



Avantages d'une bonne conservation des sols et de l'eau

Nourrir le sol

Les trois étapes de la gestion biologique de la fertilité des sols

3^{ème} pas

Application de suppléments

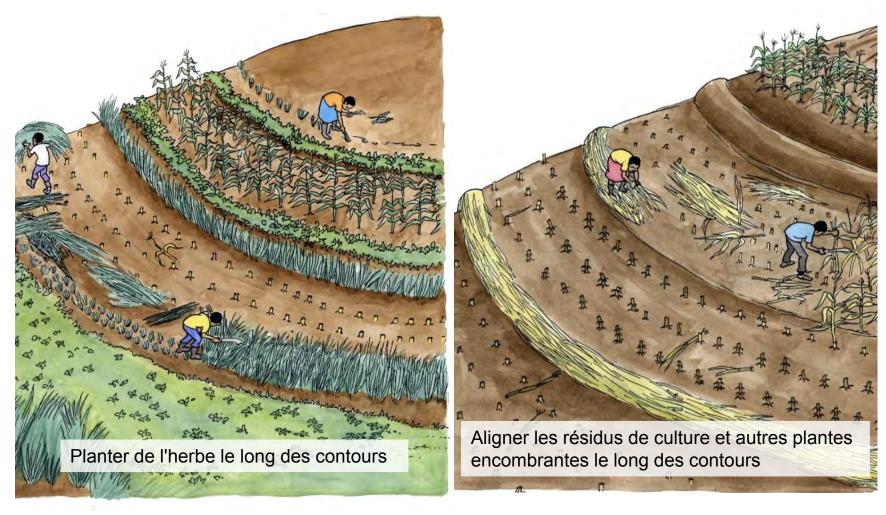
Améliorer et équilibrer la nutrition des plantes par l'application d'engrais, l'amendement du sol et l'irrigation

2ème pas

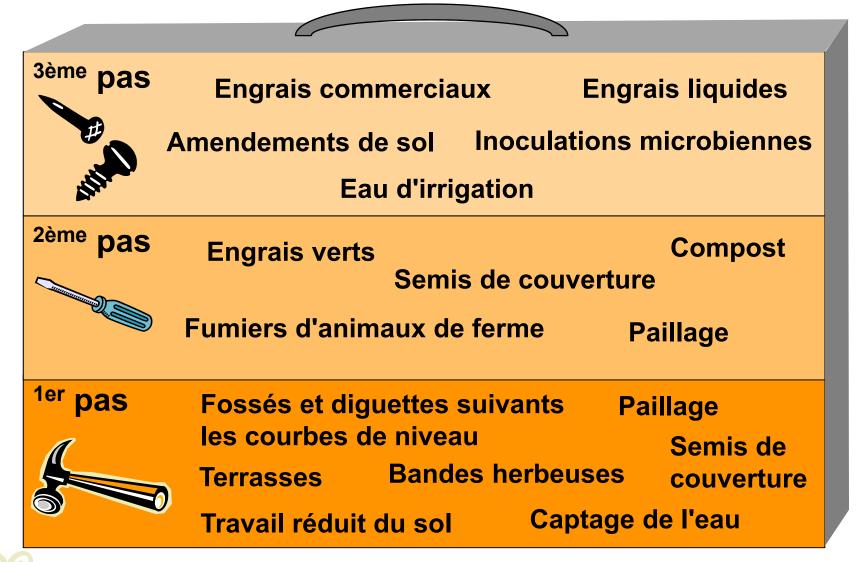
Gestion de la matière organique du sol

Améliorer la teneur en matière organique du sol par l'application de matière organique

1er pas


Conservation des sols et de l'eau

Stabiliser et protéger le sol, récolter et conserver l'eau



Minimiser l'érosion du sol dans les pentes

Outils pour la gestion de la fértilité du sol

Avantages des engrais verts

Certains fournissent du fourrage à haute teneur en protéines pour les animaux

Certains fournissent de la nourriture

Ils ne nécessitent pas de transport

Ils ne nécessitent pas de capital ou d'intrants

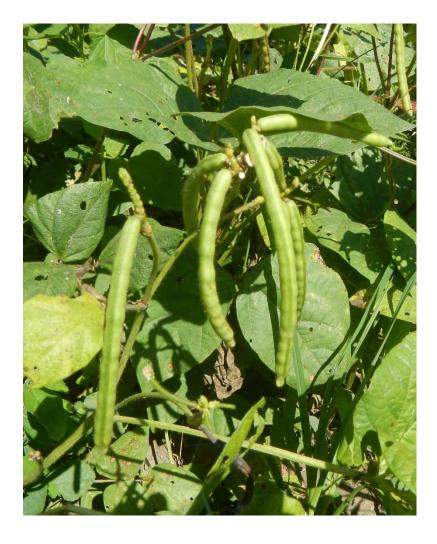
Ils ajoutent plusieurs tonnes de matière organique au sol

Ils fournissent de grandes quantités d'azote pour le sol

Ils protègent le sol contre l'érosion par le vent et l'eau

Ils préservent l'humidité du sol et la matière organique

Ils peuvent contrôler les mauvaises herbes



Critères pour la sélection des engrais verts

- Croissance rapide avec une croissance vigoureuse et non ligneuse
- Bonne croissance sans engrais dans les sols pauvres
- Adapté au climat local. Pas besoin d'irrigation.
- Peut être cultivé sans pesticides
- N'est pas étroitement lié à la récolte suivante
- Résistant à la sécheresse, lorsqu'il est cultivé pendant la saison sèche
- Légumineuse pour collecter de l'azote, non légumineuse si elle est mieux adaptée aux conditions locales
- Semences facilement disponibles et abordables
- Fournit de la nourriture ou des aliments pour animaux, si nécessaire

Plantes d'engrais verts (1) : Dolique (Niébé)

- Légumineuse polyvalente fournissant des feuilles, des graines et du fourrage avec une valeur nutritive très élevée et une appétence élevée
- Améliore la fertilité du sol
- Facile à établir
- Mieux adapté aux sols acides que d'autres cultures d'engrais verts
- Assez tolérant à la sécheresse
- Produit des rendements élevés dans un court laps de temps
- Haute production de semences

Les plantes d'engrais verts (2) : Tithonia

Photo: A. J. T. Johnsingh, WWF-Inde et NCF

- Arbuste parent du tournesol poussant jusqu'à une taille de 1,5 m à 4,0 m.
- Cultivés en haies
- Recommandé seulement lorsqu'il est déjà présent (peut devenir une mauvaise herbe, si elle n'est pas gérée correctement)
- Les feuilles et les tiges des jeunes plantes sont coupées pour le paillage ou mélangées au sol.
- Coupe régulière des haies nécessaires.
- Pas recommandée pour la culture mixte avec d'autres cultures

Les plantes d'engrais verts (3) : Chanvre Sunn (Crotalaria juncea)

- De 0 à 1900 m d'altitude ; croît sur les sols pauvres aussi
- Tolérant à la sécheresse
- Annuel, 3-4 mois jusqu'à la maturité
- Atteint 3 m, haute production de biomasse
- Fixe 100 à 200 kg d'azote par ha
- Contrôle moyen des mauvaises herbes
- Seules les jeunes feuilles sont mangeables
- Fourrage: bovins: max. 10 %, porcs: non
- Répulsif pour insectes, contrôle les nématodes
- Repousse lors de la coupe avant la floraison
- Les cultures matures fournissent un bon paillis
- Cultures intercalaires avec des cultures céréalières plus hautes
- Cultures mixte ou à relais avec légumes, haricots, pommes de terre, patates douces, manioc ou ananas.

Les plantes d'engrais verts (4) : Pois mascate (Mucuna pruriens)

Photo: Dinesh Valke de Thane. Inde

- Jusqu'à 1800 m asl
- Crôit sur des sols sévèrement dégradés également comme jachère améliorée
- Grimpe ; préfère les climats humides, tolère un peu de sécheresse ; meurt pendant la saison sèche.
- Haute production de biomasse dans un délai de 6 mois ; 4 à 12 mois jusqu'à la maturité
- Fixe jusqu'à 150 kg d'azote par ha
- Réprime les mauvaises herbes à feuilles larges, les striga et les nématodes
- Aliment : jeunes feuilles comme légumes, les haricots doivent être cuits
- Plantation au début de la saison des pluies
- Cultures à relais dans les cultures céréalières avec taille répétée (et suivi par une jachère)
- Semis de la culture suivante dans du paillis mort

Les plantes d'engrais verts (5) : Haricot Lablab

- De 0 à 1900 m d'altitude
- Durée jusqu'à l'échéance : 3 à 12 mois
- Crimpe, avec haute production de biomasse en 3 à 5 mois
- Tolérance élevée à la sécheresse lorsque établi ; peut rester vert tout au long de la saison sèche
- Fixation moyenne à élevée d'azote
- Suppression des mauvaises herbes similaire à celle du pois mascate
- Feuilles, bourgeons floraux et gousses vertes mangeables
- Haute qualité de fourrage mélangé avec de l'herbe
- Jachère améliorée après le maïs pendant la saison sèche

Les plantes d'engrais verts (6) : Haricot sabre, pois gogane, jackbean

- Pour les climats humides et sub-humides : mais grande tolérance à la sécheresse
- Grandit sur des sols pauvres ou dégradés
- Production modérée de biomasse
- N fixation jusqu'à 230 kg par ha
- Les cultures matures fournissent un bon paillis
- Aliment : jeunes feuilles, gousses tendres
- Fourrage dans de petites proportions du régime alimentaire ; graines mûres moulues
- Culture mixte avec jeunes bananes, cacao ou café, manioc ou patates douces
- Cultures à relais dans les cultures céréalières

Les plantes d'engrais verts (6) : Pois d'Angole

- Croît bien sous des conditions sèches
- Croissance arbustive
- Plantes vivaces, nouvelles variétés produisant des graines dans les 3 à 4 mois
- N fixation autour de 90 kg par ha
- Comestibles frais, séchés, cuits, moulus ou germés
- Aliments pour animaux

Les plantes d'engrais verts (6) : Haricot empoisonné

- Croissance arbustive jusqu'à 4 m de hauteur
- Plante vivace, mais produit ses premières graines après 3 mois
- Très adaptative, tolérant différents climats, sols pauvres, sécheresses et vents forts
- Nécessite au moins 850 mm de précipitations annuelles
- Toxique pour les poissons, si l'extrait entre en contact avec l'eau
- Les feuilles sont toxiques pour le bétail
- L'extrait peut être utilisé comme acaricide sur le bétail
- Agent potentiel contre les insectes nuisibles (à tester)

Avantages du compost

Compost

.... est un engrais bien équilibré.

.... augmente le pH du sol.

.... augmente la rétention d'eau dans le sol.

.... améliore la fertilité des sols sur le long terme.

.... peut supprimer les maladies transmises par le sol.

.... détruit les maladies sur les résidus de cultures compostés et les graines de mauvaises herbes.

.... améliore la valeur du fumier animal lorsque composté ensemble.

Regroupement des cultures pour la planification de la rotation

Les cultures peuvent être regroupées en fonction de.

- 1. Besoins en nutriments
- 2. Sensibilité aux ravageurs et aux maladies (familles de plantes)
- 3. Profondeur de racine
- 4. Suppression des mauvaises herbes
- 5. Exigences climatiques (eau et température)
- 6. Demande du marché / Utilisation

Regroupement des cultures en fonction des besoins en nutriments

Cultures avec forte demande en azote

Exemples:

- Maïs
- Brassicas (chou-fleur, chou, brocoli, etc.)
- Tournesol
- Céleri
- Poireau

Cultures avec demande d'azote modérée

Exemples:

- Cultures de racines et tubercules (carotte, ail, pomme de terre, patate douce, etc.)
- Cultures fruitières (tomates, poivrons, potiron, courgettes, etc.)
- Cultures foliaires (laitues, etc.)

Cultures fertilisantes (fixation d'azote, haute production de biomasse)

- **Légumineuses** (haricots, pois, arachides, arachides, etc.)
- Cultures d'engrais verts (légumineuses)

Groupement des cultures en fonction de la sensibilité aux pathogènes (familles botaniques)

Cucurbitacées

Gourdes, Concombres, Melons, Citrouilles, Courges

Choux

Brocoli, Chou, Choufleur, Moutarde, Radis, Navet, etc.

Solanacées

Pomme de terre, Tomate, Poivre, Aubergine

Alliums

Ciboulette, Ail, Poireau, Oignon, Echalote

Cultures racines

Cassave, Patate douce, Taro, Igname

Famille des carottes Carotte, Céleri,

Aneth, Panais, Persil

Céréales

Maïs, Riz, Sorgho, Blé, Avoine, Orge, Millet

Mauves

Coton, Okra

Aster

Laitue, Artichaut

Légumineuses

Haricots, Petits pois, Arachide

Regroupement des cultures par profondeur d'enracinement

Enracinement superficiel

(50 à 60 cm)

- Brassicas (chou-fleur, chou, brocoli, etc.)
- Céleri
- Maïs
- Poireau
- Cultures foliaires (laitues, etc.)
- Pomme de terre

Enracinement modéré

(90 à 120 cm)

Exemples:

- Haricots
- Pois
- Carottes
- Poivrons
- Courge

Enracinement profond

(plus de 120 cm)

Exemples:

- Tournesol
- Luzerne
- Patate douce
- Tomate
- Pastèque

Règles de base pour la rotation des cultures

- Pause entre les cultures d'une même famille (ou avec une sensibilité aux mêmes pathogènes du sol) d'au moins 2 ans.
- Au moins une **culture fertilisante** (légumineuse ou d'engrais vert remplaçant la jachère traditionnelle par une jachère intensive).
- Les cultures avec haute demande d'azote après une culture fertilisante.
- Cultures moins exigeantes en azote au cours de la deuxième ou de la troisième année suivant une culture fertilisante.
- Pas de culture de racines de suite.
- Alternance de cultures à racines profondes et de cultures à racines superficielles et peu profondes.
- Alternance de cultures supprimant les mauvaises herbes avec des cultures à faible suppression des mauvaises herbes.

Évaluation des cultures précédant la pomme de terre

Récolte précédente		Apti- tude	Commentaires	
Céréales	Pomme de terre	+++	 Pré-culture neutre Fertilisation azotée standard requise pour la pomme de terre 	
Légumineuses à graines	Pomme de terre	+++	Fertilisation azotée modérée nécessaire pour la pomme de terre	
Engrais vert	Pomme de terre	+++	 Pas de fertilisation azotée nécessaire L'apport d'azote peut être trop élevé pour la pomme de terre 	
Choux	Pomme de terre	++	 Haute fertilisation en azote nécessaire pour la pomme de terre Lutte naturelle des nématodes par les choux 	
Cultures racines	Pomme de terre	++	 Pas idéal (deux cultures racines de suite) Fertilisation azotée standard nécessaire 	
Maïs	Pomme de terre	+	 Uniquement dans sols très fertiles, car sol épuisé Sous-semis légumineux dans le maïs peut fournir un peu d'azote à la pomme de terre. 	
Solanacées	Pomme de terre	-	 Déconseillé car accumulation de pathogènes du sol (car deux solanacées de suite) 	

Évaluation des cultures suivant la pomme de terre

	Culture suivante	Apti- tude	Commentaires
Pomme de terre	Céréales	+++	 Bonne absorption des nutriments fournis par la pomme de terre
Pomme de terre	Choux	+++	Bonne absorption des nutriments fournis par la pomme de terre
Pomme de terre	Maïs	+++	Bonne absorption des nutriments fournis par la pomme de terre
Pomme de terre	Légumes	++	Bonne absorption des nutriments fournis par la pomme de terre
Pomme de terre	Solanacées	-	 Promotion des pathogènes du sol, car deux solanacées de suite

Exemples de rotations à trois cultures

Saison 1	Saison 2	Saison 3		
Pomme de terre	Deux saisons sans pomme de terre ou d'autres solanacées			
Pomme de terre	Maïs	Haricots		
Pomme de terre	Maïs	Engrais vert légumineux		
Pomme de terre	Choux	Culture légumineuse, p. ex. haricots		
Pomme de terre	Autres légumes	Légumineuses à graines		
Pomme de terre	?	?		

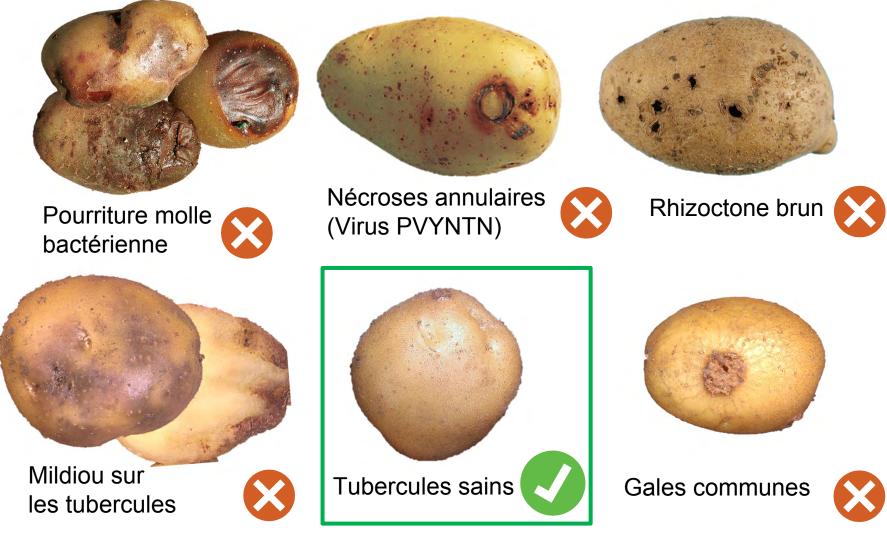
Exemples de rotations de quattre cultures

Saison 1	Saison 2	Saison 3	Saison 4			
Pomme de terre	Trois saisons sans pomme de terre ou autres Solanaceae					
Pomme de terre	Maïs	Culture à demande moyenne en azote	Culture légumineuse, p. ex. haricots			
Pomme de terre	Choux	Culture légumineuse, p. ex. haricots	Cultures céréalières			
Pomme de terre	Maïs ou autres céréale	Engrais vert	Choux			
Pomme de terre Culture mixte Maïs/Vesce ou Maïs/Mucuna		Choux	Culture légumineuse, p. ex. haricots			

Critères de sélection des variétés de pommes de terre

 Faible susceptibilité aux maladies

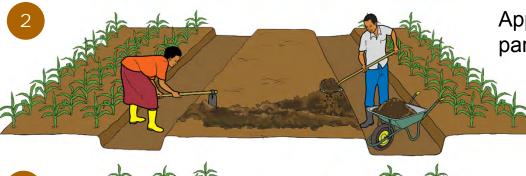
 Faible besoin en azote


 Développement rapide d'une canopée pour supprimer les mauvaises herbes Utilisation prévue (consommation fraîche, stockage prolongé, friture, etc.)

 Potentiel de rendement adapté aux conditions locales

 Souhaits des clients / exigences du marché (couleur, goût, forme, taille, etc.)

Détection des maladies des tubercules



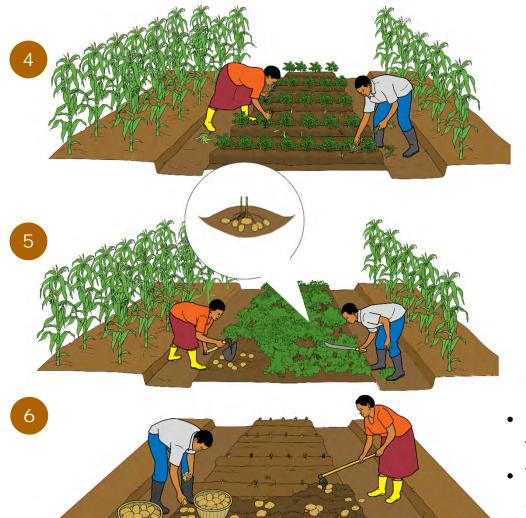
Production de plants de pomme de terre de qualité (1)

Choisissez un endroit avec un sol fertile (idéalement avec sol vierge ou culture préalable légumineuse).

Labourez le sol et faites un lit surélevé de 15 cm de hauteur et 1,5 m de largeur.

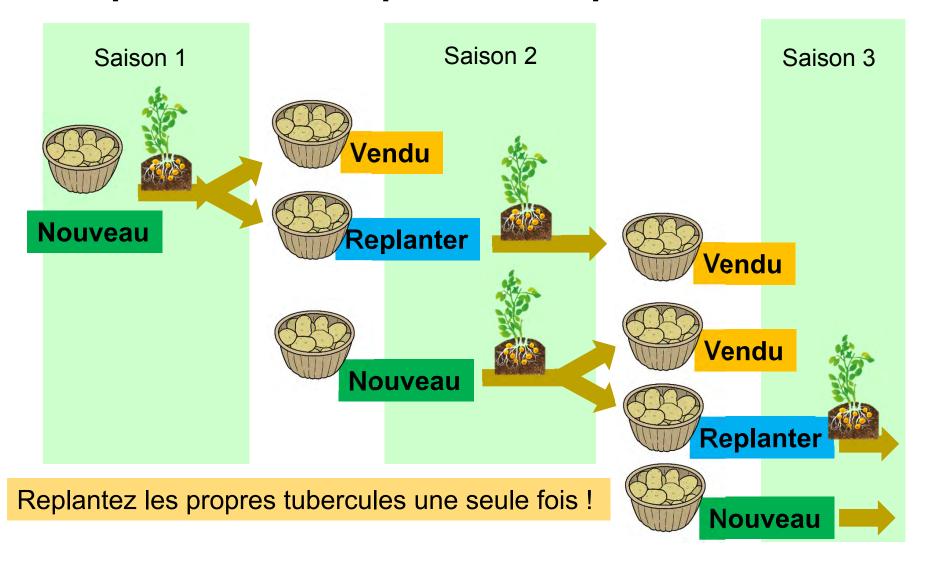
Appliquez environ 9 litres de compost mûr par m², si possible, et l'incorporer au sol.

Idéalement, plantez du maïs autour de la parcelle de semence pour tenir à l'écart les pathogènes transmis par l'air.

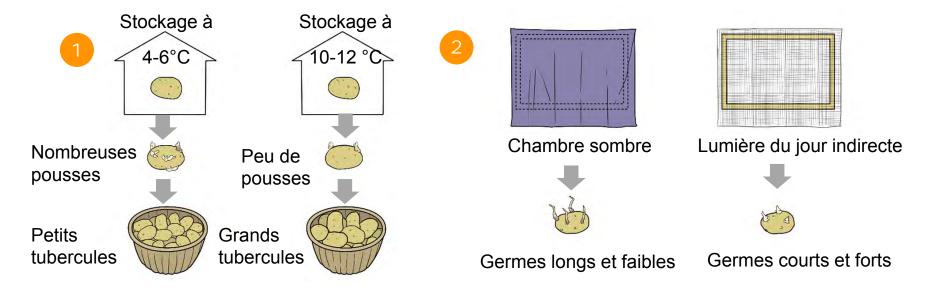


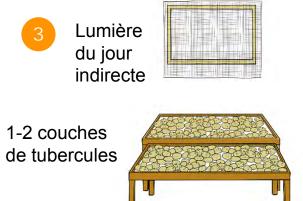
Plantez des plants exempte de maladies et d'origine certifiée.

Plantez les tubercules en 15 cm de profondeur à 30 x 30 cm, et recouvrezles de terre.



Production de plants de pommes de terre de qualité (2)


- Enlevez les plantes maladies.
- Enlevez les mauvaises herbes à la main (pas à l'aide d'outils).
- Vérifiez régulièrement la taille des tubercules à partir de la fin de la floraison.
- Coupez le feuillage près du sol, lorsque 70 à 80 % des tubercules ont une taille de 30 à 60 mm.
- Après 1 semaine, coupez la repousse des feuilles pour éviter l'infection virale par les pucerons.
- Lorsque les tubercules ont une peau ferme, creusez-les soigneusement.
- Vérifiez si les tubercules présentent des signes de maladies ou de parasites. Ne conservez que des tubercules sains.


Remplacement des plants multipliés à la ferme

Prégermination des plants de pomme de terre

Des pousses courtes et idéales après la prégermination

Culture manuelle de la pomme de terre

Avantages

- Faible coût des outils, peu d'entretien
- Les outils sont toujours disponibles.
- Travail du sol en douceur possible
- Le nombre de personnes peut être adapté en fonction de la quantité de travail.

Inconvénients

- Fatiguant et malsain
- Faible productivité
- Un manqué en main-d'œuvre peut empêcher l'exécution des travaux à temps.
- L'utilisation efficace de la maind'œuvre demande de la planification.
- Risque d'endommager les tubercules avec la houe.

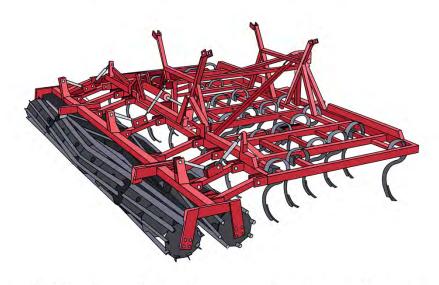
Culture mécanique de la pomme de terre

Avantages

- Productivité nettement élevée
- Peut contribuer à de meilleures conditions de croissance et à des rendements plus élevés.
- Aucune dépendance à l'égard de la main-d'œuvre, aucun coût de main-d'œuvre supplémentaire, moins besoin d'embaucher et de gérer les gens.
- Facilite la récolte de grandes superficies

Inconvénients

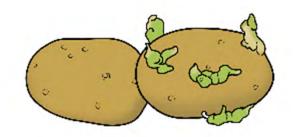
- Coûts initiaux élevés pour l'achat des machines, et coûts d'entretien élevés
- Productivité élevée requise pour toutes les opérations
- Risque d'endommagement de la structure du sol et de la culture.
- Réduit le nombre de personnes bénéficiant d'emplois agricoles.
- Dépendance à l'égard du fonctionnement des appareils


Préparation du lit de semis

Tracteurs uniaxials

Outils tirés ou motorisés par un tracteur

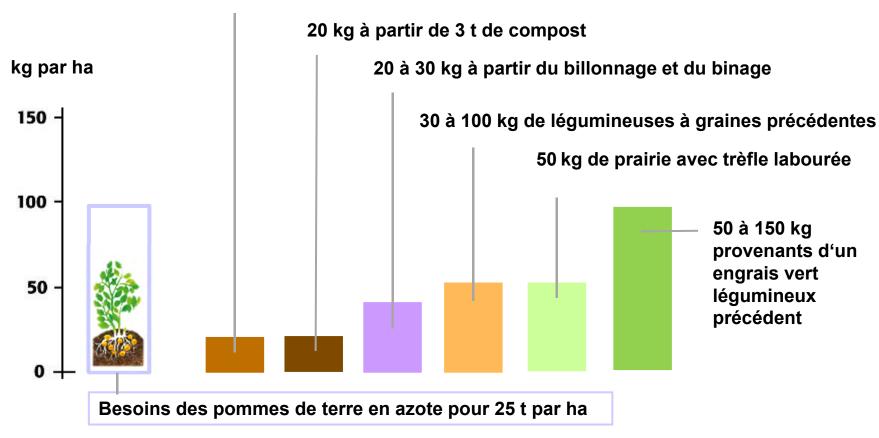
Bineuse rotative pour utilisation sur sols lourds principalement



Cultivateur à dents ressort avec rouleau cage pour utilisation sur des sols légers

- Limitez le travail intensif du sol au minimum nécessaire, car ceci dégrade la structure du sol.
- Évitez le compactage du sol.

Densité de plantation des pommes de terre


Nombre de tubercules requis par hectare pour différentes densités

Distance entre les rangs	Distance entre les plantes		
	25 cm	30 cm	40 cm
75 cm	53333	44444	33333
80 cm	50000	41667	31250
90 cm	44444	37037	27778
100 cm	40000	33333	25000

Approvisionnement des pomme de terre en azote

20 kg de 1 t de fumier de poulet à la culture précédente (max. 30 t)

Lutte mécanique contre les adventices (1)

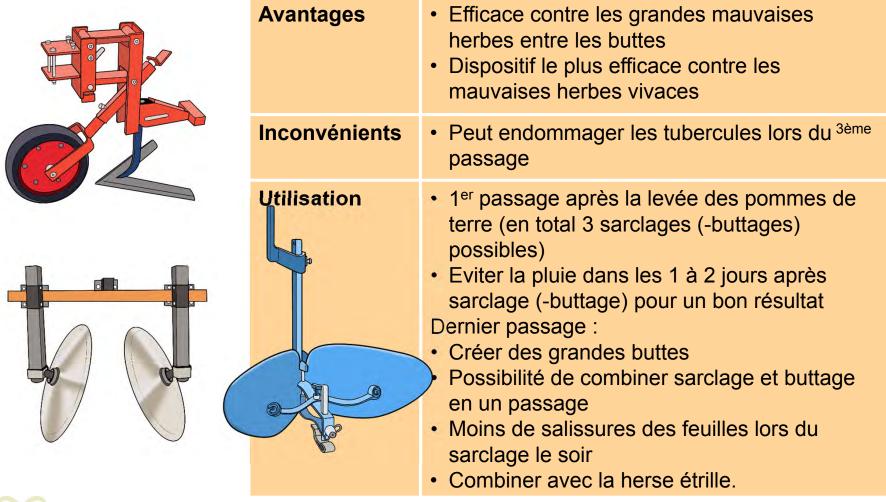
Herse étrille

Avantages Polyvalent et rapidement employable Travail rapide

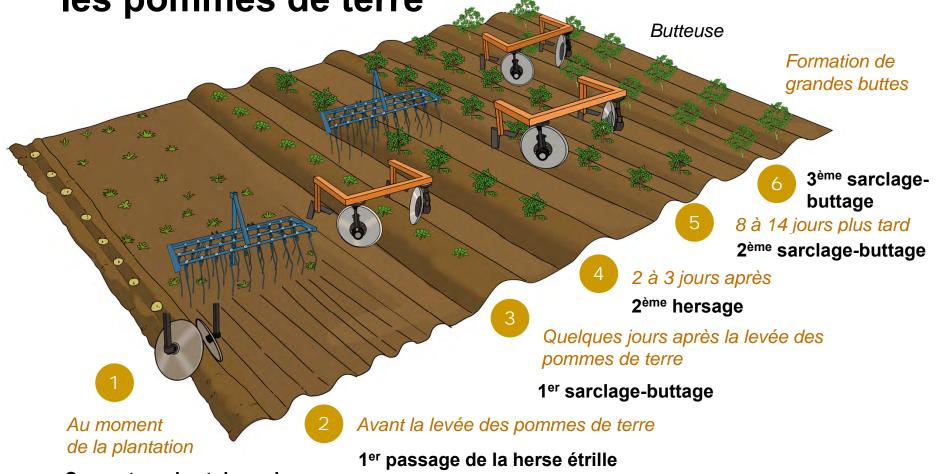
- Bon ajustement à la forme de la butte selon le modèle
- Peut être combiné avec la houe
- La herse étrille à l'aveugle favorise la levée des pommes de terre.

Inconvénients

- Efficace uniquement contre les petites mauvaises herbes avant le stade 2 feuilles
- Efficace uniquement sur la butte, si aucun ajustement à la forme de la crête possible


Utilisation

- 1er passage avant la levée de la culture
- Ne pas étriller entre la levée et 10 cm de hauteur
- 2ème passage possible dès que les fanes ont 10 cm de hauteur.
- Rebutter 1-2 jours après.


Lutte mécanique contre les adventices (2)

Sarcleuse à socs et butteuses

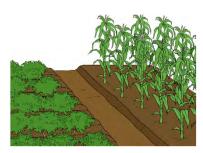
Itinéraire pour le désherbage méchanique dans les pommes de terre

Couverture des tubercules

Maîtrise des maladies et ravageurs en pommes de terre biologique

^{3ème} pas

Contrôle direct


Appliquer des mesures de contrôle physiques et des pesticides naturels

^{2ème} pas

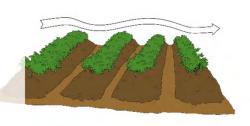
Gestion de l'habitat

Encourager les ennemis naturels des ravageurs, distraire les ravageurs et assurer une bonne aération de la culture

1er pas

Bonne gestion des cultures

Fournir de bonnes conditions de croissance pour créer des plantes fortes



Lutte contre le mildiou

Sources d'infection

Matériel de plantation infecté

Spores fongiques dans l'air et le sol à >90 % de hum. rel. et >18 °C

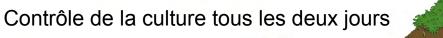
Prévention

Variétés résistantes

Plants sains

Prégermination des plants

Emplacement bien ventilé




Cuivre


Récolte barrière

Densité réduite

Élimination des sources potentielles d'infection

Produits couramment utilisés pour lutter contre le mildiou

Effet prouvé:

Cuivre

Effet présumé ou allégué :

- Poudre de pierre
- Feuilles de papaye macérées
- Tithonia
- Cendres à bois
- Charbon de bois
- Ail
- Poudre à pâte
- Micro-organismes efficaces (EM)
- Ortie et Omo

Comment préparer la bouillie bordelaise

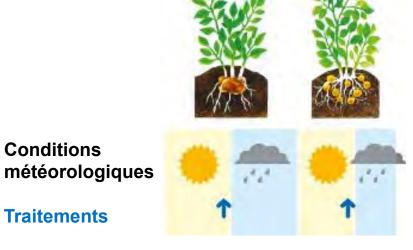
Chaux hydratée fraîche (hydroxyde de calcium) seulement, pas de la dernière saison

Protégez le nez et la bouche à l'aide d'un respirateur filtrant la poussière et la buée, et porter des lunettes de sécurité pour protéger les yeux. Porter des vêtements de protection.

Appliquer bientôt sur les plantes

10 litres de bouillie bordelaise avec 25 g de cuivre pur.

Stratégie d'application du cuivre contre le mildiou


Infestation Infestation dans les Niveau d'infection Aucune infestation dans dans la région champs voisins ou dans son champ la région **Risque d'infection** Bas Moyen Haut **Utilisation de cuivre** 0 Basse Haute 200 à 300 g per ha 800 à 1000 g per ha

Application du cuivre

Règles de base :

- Avant les précipitations afin de protéger la culture
- Assez tôt pour laisser sécher le cuivre
- Sur les deux faces des feuilles

Traiter les plantes par le haut et par le bas!

Répétition du traitement :

- Après 30 mm de pluie ou
- Après 7 jours

Contrôle du flétrissement bactérien

Symptômes:

- Flétrissement rapide de toute la plante sans jaunissement ni taches sur les feuilles
- Premier symptômes aux extrémités des branches pendant le jour
- Feuilles avec une teinte bronze
- Anneaux noirs ou bruns dans les tubercules coupés en deux
- Les tubercules pressés exsudent un liquide blanc épais.
- Le sol colle aux yeux des tubercules au moment de la récolte.
- Tubercules pourris avec une très mauvaise odeur

Méthodes indirectes / preventives:

- Biodiversité efficace
- Tolérance ou résistance génétique variétale
- Rotation des cultures

Méthodes directes:

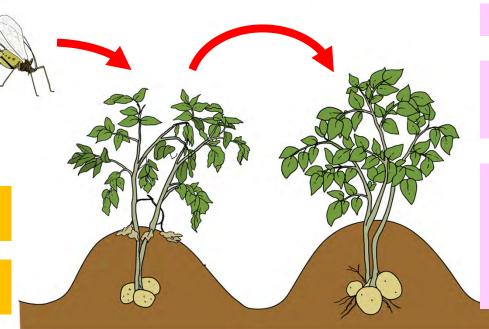
- Agents phytosanitaires commerciaux
- Préparations faites à la ferme (efficacité non prouvée)

Prévention et gestion des infections virales

Infection

Avec du matériel de plantation infecté

Par des insectes suceurs porteurs de virus


Contrôle

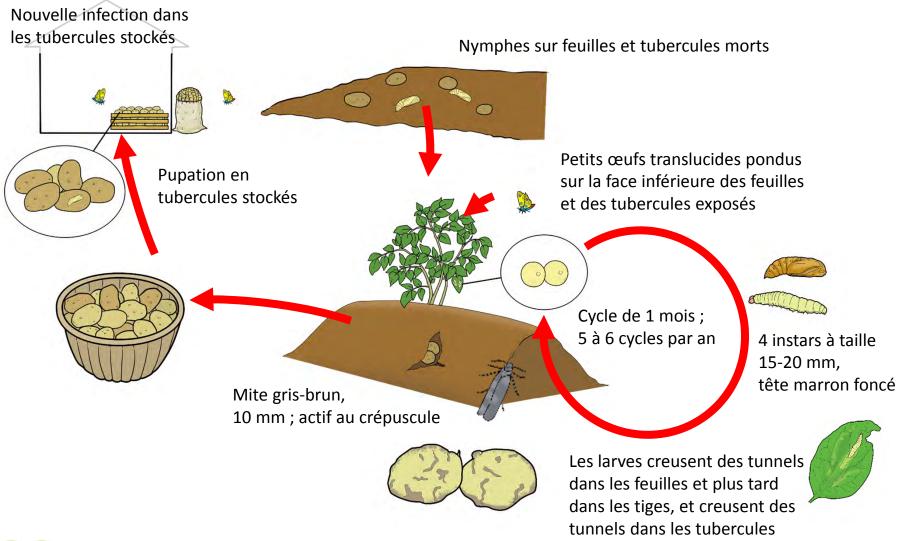
Enlever précocement

les plantes malades

Lutte contre les

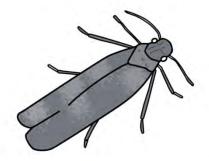
insectes suceurs

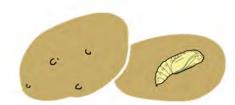
Prévention


Plants exempts de virus

Variétés résistantes

Pas de culture superposée de pommes de terre


Eviter ou éliminer d'autres solanacées et les pommes de terre spontanées dans les champs des voisins et ses propres champs


Cycle de la teigne de la pomme de terre

Teigne de la pomme de terre: prévention et lutte

Prévention:

- Utilisez des plants saines.
- Évitez de planter dans un sol grossier.
- Plantez aussi profondément que possible (10 à 15 cm de profondeur).
- Buttez la culture au moins trois fois
- Assurez des buttes compactes afin d'empêcher les teignes d'atteindre les tubercules pour pondre des œufs.
- A la récolte, évitez d'exposer les tubercules aux mites.
- Détruisez immédiatement toutes les pommes de terre infestées.
- Enlevez tous les résidus végétaux du champ et détruisez toutes les plantes de pommes de terre spontanées avant de planter de nouvelles cultures de pommes de terre.
- Encouragez les ennemis naturels tels que les coccinelles, les dentelles et les guêpes parasites (p. ex. Diadegma mollipla, Chelonus spp.).

Défanage

- Lorsque les fouilles d'échantillons montrent que les tubercules ont atteint la taille requise et la teneur en amidon souhaitée.
- Dans une culture saine, lorsque la moitié des feuilles sont devenues jaunes.
- Dans le cas de mildiou sur les feuilles, pour empêcher une infection des tubercules.

- Pommes de terre industrielles : uniquement lorsque la teneur en amidon et la cuisson test répondent aux exigences.
- Pommes de terre de semence :
 en dépendence de la taille des
 tubercules. La teneur en amidon et la
 présence de pucerons peuvent être
 importantes aussi.
- En cas de repousse, répétez la mesure.